
Aurora’s pg college
Moosarambagh
Mca Department

PROGRAMMING IN DATA STRUCTURES THROGH C++

Lab manuals

For

MCA IST YR ISEM

LABORATORY MANUAL CONTENTS

Lab Objective

 At the end of the course students should be familiar with the main features of
the C++ language.

 Be able to write a C++ program to solve a well specified problem.
 Understand a C++ program written by someone else.
 Be able to debug and test C++ programs;
 Understand how to read C++ doc library documentation and reuse library code.
 To make the students understand the features of object oriented principles and

familiarize them with virtual functions, templates and exception handling.
 To make the students to develop applications using C++.

Programmers Educational Objectives

Graduates will be able to

 To analyze, design and provide optimal solution for Master of Computer

Applications and multidisciplinary problems.

 To pursue higher studies and research by applying knowledge of mathematics and

fundamentals of computer science.

 To exhibit professionalism, communication skills and adapt to current trends by

engaging in lifelong learning.

SUBJECT INDEX

Lab No. Index
Week

involved

1 Introduction to OOP lab (Simple C++ program) 1-2

2 Classes and Objects 5-6

3
Constructors and Destructors

7-8

Write a program to demonstrate different types of constructors.

4
Operator overloading

9-10

Write a program for overloading various unary operators.

5 Write a program for overloading various binary operators 10-11

 Type Conversion

6 Write a program for type conversion 11-12

 (basic to class, class to basic ,class to class)

 Inheritance

7 Write a program for multiple inheritance 13-14

 Write a program for hybrid inheritance

8
Polymorphism

15-16

Write a program for polymorphism(virtual function)

9 Write a program for templates 17-18

10 Program using files 19-20

11 Program using streams 21-22

12 Program using Arrays and Linked list 22-25

 Programs on stack and Queues 25-30

 Appendix - A

 Appendix - B

Experiment No. 1

Title:Introduction to the Fundamentals and history of OOP Concepts

Objective:

 At the end of this experiment, students should be able to understand following

points:

1. Basic concepts of c++ like insertion,extraction operator

2. Different operators

3. Array,String,Function

4. Basic object oriented concepts

Theory:

Introduction

Object oriented language was developed by Bjarne Stroustrup in1979 at Bell Labs. As

an enhancement to the C programming language and originally named "C withClasses".

It was renamed to C++ in 1983.C++ is designed to be a statically typedgeneral-purpose

language that is as efficient and portable as C. C++ is designed to directly and

comprehensively support multiple programming styles (procedural programming, data

abstraction, object-oriented programming, and generic programming) C++ avoids

features that are platform specific or not general purpose

`

 Class Virtual Function Multiple

Inheritance

Exception

Handling
Templates Function

Overloading

C C++

A LOOK AT PROCEDURE ORIENTED LANGUAGES

C, PASCAL, FORTRAN commonly known as procedure-oriented

programming(POP).That is,each statement in the language tells the computer to do

something..A program in the procedural language is a list of instuction.The program

creates the list of insructions and the computer carries them out.

Object Oriented Procedural

Methods Functions

Objects Modules

Message Argument

Attribute Variable

In multi-function program, many important data items are placed as global so that they

may be accessed by all the functions .Each function may have its own local data. Fig

shows the relationship of data and functions in a procedure

Relationship of data and functions in procedural language

GLOBAL DATA GLOBAL DATA

FUNCTION-1 FUNCTION-2 FUNCTION-3

LOCAL DATA LOCAL DATA LOCAL DATA

OBJECT ORIENTED LANGUAGE

The fundamental idea behind the object oriented language is to combine into a single

unit of data and functions that operate on that data. Such unit is called an object.

Object-oriented programming (OOP) is a programming paradigm that uses "objects"

– data structures consisting of datafields and methods together with their interactions –

to design applications and computer programs. Programming techniques may include

features such as information hiding, data abstraction, encapsulation, modularity,

polymorphism, and inheritance. It was not commonly used in mainstream software

application development until the early 1990s.
]
 Many modern programming languages

now support OOP.

BASIC CONCEPTS OF OBJECT-ORIENTED PROGRAMMING

Object

An object is a basic run time entity. Object represents/resembles a Physical/real entity.

An object is simply something you can give a name. All the objects have some

characteristics and behavior. The states of an object represent all the information held

within it and behavior of an object is the set of action that it can perform to change the

state of the object. All real world objects have three characteristics:

 State: How object react?

 Behavior: what we can do with this object?

 Identity: difference between one object to another object?

Object is the basic unit of object-oriented programming. Objects are identified by its

unique name. An object represents a particular instance of a class. There can be

more than one instance of an object. Each instance of an object can hold its own

relevant data.

An Object is a collection of data members and associated member functions also

known as methods.

Class

Classes are data types based on which objects are created. Objects with similar

properties and methods are grouped together to form a Class. Thus a Class represent a

set of individual objects. Characteristics of an object are represented in a class as

Properties. The actions that can be performed by objects become functions of the class

and is referred to as Methods.

For example consider we have a Class of Cars under which Santro Xing, Alto and

WaganR represents individual Objects. In this context each Car Object will haveits

own, Model, Year of Manufacture, Color, Top Speed, Engine Power etc., which form

Properties of the Car class and the associated actions i.e., object functions like Start,

Move, and Stop form the Methods of Car Class.

No memory is allocated when a class is created. Memory is allocated only when an

object is created, i.e., when an instance of a class is created.

Data Abstraction:

Data Abstraction increases the power of programming language by creating user

defined data types. Data Abstraction also represents the needed information in the

program without presenting the details.

Data Encapsulation:

Data Encapsulation combines data and functions into a single unit called Class. When

using Data Encapsulation, data is not accessed directly; it is only accessible through the

functions present inside the class. Data Encapsulation enables the important concept of

data hiding possible.

Instance

One can have an instance of a class or a particular object. The instance is the actual

object created at runtime.. The object consists of state and the behaviour that's defined

in the object's class.

Data hiding:

This is the property in which some of the members are restricted from Outside access.

This is implemented by using private and protected access specifies.

Message passing

"The process by which an object sends data to another object or asks the other object to

invoke a method." Also known to some programming languages as interfacing

Inheritance

Inheritance is the process of forming a new class from an existing class or baseclass.

The base class is also known as parent class or super class, the new classthat is formed

is called derived class. Derived class is also known as a child class or sub class.

Inheritance helps in reducing the overall code size of the program, which is an

important concept in object-oriented programming.

Polymorphism:

Polymorphism allows routines to use variables of different types at different times. An

operator or function can be given different meanings or functions. Polymorphism refers

to a single function or multi-functioning operator performing in different ways.

Reusability:

This term refers to the ability for multiple programmers to use the same written and

debugged existing class of data. This is a time saving device and adds code efficiency

to the language. Additionally, the programmer can incorporate new features to the

existing class, further developing the application and allowing users to achieve

increased performance. This time saving feature optimizes code, helps in gaining

secured applications and facilitates easier maintenance on the application.

Basics of C/C++ Programming

C++ is a high level language with certain low-level features as well. Remember that

C++ is a case-sensitive language. A C++ program is actually a collection of statements

and data on which various operations can be performed. C++ is a

superset of C. Most of what we already know about C applies to C++ also. Therefore,

most all C programs are also C++ programs. However, there are a few minor

differences that will prevent a C programs to run under C++ compiler .the object

oriented features in C++ allow programmers to build large programs with clarity ,

extensibility and ease of maintenance incorporating the spirit and efficiency of C. The

addition of new features has transformed C from a language that currently facilitates

top-down structured design, to one that provides bottom-up, object-oriented design.

Kindly refer to listing 1.1 to see what a simple C++ program looks like.

Comments

C++ introduces a new comment symbol //(double slash).A comment may start

anywhere in the line. Note that there is no closing symbol

//This is an example of C++ //

program

The C comment symbol /* */ are still valid for multi line comments. /*

this is an example of C++ */

Output Operator

cout<<”C++ is better than C”;

Causes the string quotation marks to be displayed on the screen. This statement

introduces new C++ features, cout and <<. The identifier cout is a predefined object

that represents output stream in C++. The standard output stream represents the screen.

The operator << is called the insertion operator. It inserts (or sends) the contents of the

variable on its right to the object on its left. It is same as printf() in C++.

Output using insertion operator

Input Operator

The statement cin<<num1; is an input statement and causes program to wait for the

user to type in number. The identifier cin is a predefined object in C++ that

corresponds to the standard input stream. Here stream represents the keyboard. The

operator >> is known as extraction or get from operator.

Object Variable

Cout << C++

Insertion Operator

>>

 Input
using extraction operator

Data Types

Following are the few basic data types used in C++.

Name C++ Describes

Integer Int numeric data in the range of -32768 to 32768

Floating- Float floating-point numeric data in the range 8.43x10-37 to

Point
3.37x1038

Double double floating-point numeric data in the range 2.225x10-308 to

 1.7976x10308;

Character Char character specified by character codes -128 to 127

Boolean Bool has only two values, either true (1) or false (0)

Void Void A non existent value

Relational Operators

C++ also uses some relational operators to perform comparison of different values.

Some of these are:

Operation Operator

Cin 40.5

Keyboard

Equal to = =

Not equal to !=

Less than <

Less than or equal to <=

Greater than or equal to >=

Greater than >

Type Qualifiers Name C

Name C++ Describes

Long Form long It requests a long form of an item. Can be used with both int and
 double

Short Form short It requests a short form of an item. Can be only used with int and
 not double

Signed signed It describes a variable from its maximum negative to its maximum
Number positive value

Unsigned unsigned It describes a variable from 0 to a maximum positive value. Valid
Number only with int and char data types

Constant const It describes value of a variable to be unchangeable
Value

Operators

C++ has a variety of operators to perform various tasks. You came across a few in the

previous lab and a few new operators will be discussed in this lab.

Logical Operators

Logical Operators are used to perform logical operations on data. These operatorsare

typically useful to see whether certain conditions are satisfied or not. Logical

Operations used in C++ are:

x y Ans

And (&&)

This operator is used to evaluate an expression for logical

AND operation. The truth table on the right explains what a

logical And (&&) really means.

Example:

1 1 1

1 0 0

0 1 0

0 0 0

If (a>b && a>c)

{

cout<<”a is greater than both b & c”;

}

Or (||)

This operator is used to evaluate an expression for logical

OR operation. The truth table on the right explains what a

logical and (&&) really means

.Example:

If (a>b || c>b)

{

cout<<”Either a or c or both are greater than b”;

}

Negation (!)

This operator is used to evaluate an expression for logical negation operation. Also,

there is an operator for the condition “Not equal to” (!=). An example can be:

If (!(a>b) && c!=b)

{

cout<<”here a is not greater than b, and c is not equal to b”;

}

Increment & Decrement (++ and --)

These operators are used to increment or decrement value of a variable. For Example:

a++; //This is same as a=a+1;

x y Ans

1 1 1

1 0 1

0 1 1

0 0 0

a - -; //This is same as a=a -1;

Assignment (=) and Compound Assignemnts (operator=)

A = 1; //Simple assignment operator

If a mathematical operator is used in conjunction with the assignment operator we can

make the

code better.

A += 1; //Same as A=A+1;

ARRAYS

An array is like a list or table of any data type. We use arrays for a variety of

programming tasks especially when we have to make a list of the same type of data.

UNIDIMENSIONAL ARRAYS

An array with a single dimension is like a list. That is how we define such arrays:

int list[10]; //Defining a list of 10 integers

This statement actually means that we are declaring a list of arrays from 0 to 9. This

means that the starting array element will be referred to as list[0] and the last element

will be referred to as

list[9].

Elements of this array can be referenced as:

list[2]=20;

list[5]=30;

cout<<list[2]<<”\n”;

cout<<list[5];

Elements of an array can be initialized at the time of its declaration.

int list[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; //Defining an array of ten integers

MULTIDIMENSIONAL ARRAYS

An array can also be multidimensional. To define a multidimensional array, we follow

a similar approach:

int list[3][3]; //Define a 3x3 matrix or table

To reference various elements of this array, similar approach is used. For example:

list[1][2] = 34; //Assigning 34 to row 1 and column 2

list[0][2] = 20; //Assigning 20 to row 0 and column 2

Like the one-dimensional array, we can also initialize a multidimensional array like:

int list[3] [3] = { { 1, 2, 3} , {4, 5, 6} , {7, 8, 9} }; //Initializing a 3x3 matrix

You can write the same thing more elegantly as:

int list[3][3] = { { 1, 2, 3 },{ 4, 5, 6 },{ 7, 8, 9 } }; 1 2

3 4 5 6 7 8 9

The initialized matrix will be like this

A text string in C++ is nothing but a one-dimensional array of characters

terminated by a

special character „\0‟. Let‟s see what we can do with string in C++;

DEFINING A STRING

A string can be defined in a similar fashion as an array. That‟s how we define a

string:

char str[30]; //Defining a string of 30 characters.

Similarly to access individual characters of a string, we use the following syntax:

str[0] = „U‟;

str[1] = „m‟;

str[2] = „a‟;

cin>>str[3];

cout<<str[3];

We can also initialize a string while declaring it. This is how we do it: char

str[] = { „a‟, „b‟, „c‟, „\0‟ }; //Defining a string initialized to “abc”

making it more simple by:

char str[] = “abc”; //Defining a string initialized to “abc”

To help us in string manipulation, we include two more header files:

string.h

stdio.h

SOME INTERESTING OPERATIONS ON STRINGS

Following are a few interesting string manipulation functions defined in string.h. These

functions make the life of a C++ programmer a lot easier and are a part of the standard

C++ library. To assign some text to a string, we can use the following function:

strcpy (char dest[], char source[])

Similarly, to concatenate two strings we use the following function:

strcat (char str1[], char str2[])

To compare two strings, we use the function:

strcmp (char str1[], char str2[])

If this function returns 0, that means both strings are same.find the length of the string,

we use the function:

strlen(str[]);

FUNCTIONS

Basic format of a function prototype:

return_type function_name(argument_list)

Similar to the concept of a black box, function can be treated like a black box

where you give some input to that box and request it to perform something in order to

obtain the desired output. Hence, as the creator of the function, one should be careful of

what you are creating. Avoid from making careless mistakes in providing the return and

the arguments lists.

Common mistakes done by students that can cause syntax and execution errors

are:

1. Not passing the correct values for the parameter list. For example: when a

function requires a pointer as argument, then you have to place „&‟ operator

before the variable name, which means you are passing the address of the

variable in calling the function. So be sure of writing the correct syntax for

such a purpose.

2. Providing a return type in function header/prototype but not defining it inside

function definition.

3. Forgetting to place semicolon at the end of function header/prototype.

4. The function call and function prototype do not match to each other.

Some important terminologies

These are some terminologies that you normally encounter in class, books or

website. By referring to the function given below, Table 3 gives the associated

example with its corresponding terminology.

Example function:

1 double square (double side)

2 {

3 return side*side;

4 }

Terminologies Example

Function header/signature Line 1

Function prototype double square (double)

Function definition Line 1 to 4

Function call double a=square(5.6);

Function parameter double side

Simple C++ Program

#include<iostream.h>

int main()

{

float num1,num2,sum,avg;

clrscr();

cout<<"Enter two numbers\n\n"; //output statement

cin>>num1; //input statement

cin>>num2;

sum=num1+num2;

avg=sum/2;

cout<<"SUM="<<sum<<"\n\n";

cout<<"AVERAGE="<<avg<<"\n";

getch();

return 0;

}

Output

Conclusion:

OOP provides a clear modular structure for programs which makes it good for defining

abstract data types where implementation details are hidden and the unit has a clearly

defined interface. C++ is a versatile language for handling very large programs

Experiment No.2
Title:Write a program which demonstrates Classes and objects.

Objective:

 At the end of this experiment, students should be able to understand following

points:

1. Class and object.

2. Crating class and object.

3. Defining function in different ways.

4. Concept of Access Specifier like private, public etc.

Theory:

An Overview about Objects and Classes

In object-oriented programming language C++, the data and functions (procedures to

manipulate the data) are bundled together as a self-contained unit called an object. A

class is an extended concept similar to that of structure in Cprogramming language,

this class describes the data properties alone. In C++ programming language, class

describes both the properties (data) and behaviors (functions) of objects. Classes are

not objects, but they are used to instantiate objects.

A typical C++ program would contain four sections as shown in the Fig. 2.1. These

sections may be placed in separate code files and then complied independently.

Include Header Files

Class Declaration

Member Function Defination

Main Function Program

Features of Class:

Classes contain data known as members and member functions. As a unit, the

collection of members and member functions is an object. Therefore, these units of

objects make up a class

How to write a Class:

In Structure in C programming language, a structure is specified with a name. The C++

programming language extends this concept. A class is specified with a name after the

keyword class.

The starting flower brace symbol {is placed at the beginning of the code. Following the

flower brace symbol, the body of the class is defined with the member functions data.

Then the class is closed with a flower brace symbol} and concluded with a colon;.

class class_name
{

data;
member functions;
……………

};

There are different access specifiers for defining the data and functions present inside a
class.

Access specifiers:

Access specifiers are used to identify access rights for the data and member functions

of the class. There are three main types of access specifiers in C++ programming

language:

 private :Aprivatemember within a class denotes that only members of

thesame class have accessibility. The private member is inaccessible from

outside the class.

 public : Publicmembers are accessible from outside the class.

 protected: A protected access specifier is a stage betweenprivateandpublic

access. If member functions defined in a class are protected, theycannot be

accessed from outside the class but can be accessed from the derived class. .

When defining access specifiers, the programmer must use the keywords: private,

public or protected when needed, followed by a semicolon and then define thedata and

member functions under it.

In the code above, the member x and y are defined as private access specifiers. The

member function sum is defined as a public access specifier.

General Template of a class:

General structure for defining a class is:

class NewClass
{

private:

int
data;
float
cost;

public:
void getData(int a,float b);//function to initialize data
void putData(void); //function to return data

};

class classname

{

 Access specifier:

 Data members;

 Member Functions

Access specifier:

 Data members;

 Member Functions

};

Comparison between a Class and a Structure

class Bird

{ struct Bird

char name[10]; {

int age; char name[10];

say(); int age;

move(); say();

}; move();

 };

If you compare the two declarations, you will not notice any difference accept the

keyword “struct” or “class”.The difference between them is in their implementation.

A Structure‟s components are defined public by default while that of a class are

defined private by default. Here private and public are called access specifiers.

Creating Objects

Once class has been declared, we can create variables of that type by using the class

name (like other built-in variables)

Juts as we declare a variable of data type int as: int

x;

Objects are also declared as:

class name followed by object name;

NewClass N; //memory for N is created

This declares e1 to be an object of class NewClass

The object can also be declared immediately after the class definition. In other words

the object name can also be placed immediately before the closing flower brace symbol

} of the class declaration. For example

class NewClass
{

}N1,N2,N3;

would create the objects N1,N2and N3 of type NewClass

Accessing Class members

The private data of class can be accessed only through the member function of that

class. The following is the format for calling a member function.

Object-name.function-name (actual-arguments);

For example, the function call statement

N.getcdata(100,75.5);

is valid and assigns the value 100 to data and 75.5 to cost of the object N by

implementing getdata() function. Similarly the statement

N.putdata();

Would display the values of the data members.

Defining Member Function

Member function can be defined in two places

 Outside the class definition

 Inside the class definition

Outside the class definition:

An important difference between a member function and normal function is that a

member function incorporates a membership „identity label„ in the header. This label

tells the complier which class the function belongs to. The general form of a member

function definition is:

Return-type class-name :: function-name (argument declaration)
{

Function body
}

class-name:: tells the compiler that the functionfunction-namebelongs to the

class-name

:: Is called scope resolution operator.

For example

void NewClass :: getdata(int a, float b)

{

data = a; cost

= b;

}

void NewClass :: purdata(void)

{

cout<<”Data :”<<data<<”\n”;

cout<<”Cost :”<<cost<<”\n”;

}

Inside the Class Definition

Another method of defining the member function is to replace the function declaration

by the actual function definition inside the class. For instance

class NewClass

{

int data; float

cost;

public:

void getdata(int a,float b);

//inline function

void putdata(void) {

//display data }

};

when function is defined inside a class, it is treated as an inline function.

friend function

Friend function is a special function which can access the private and protected

Members of a class through the object of the same class. Friend functions are not the

member functions of a class and they can be declared under any access specify. To

make an outside function “friendly” to the class we have to declare this function as

friend of the class as shown

class ABC
{

……
public:

……
……
friend void xyz(void);// Declaration

};

Algorithm:

1) Create any class(NewClass) , define class variables, member functions of class.

2) In main function create object of the class(N,N1)

3) Access members of above class in main class.

4) Call the methods of the class with the respective class with

obj_name.method_name(N.getdata(actual arguments))

Output

Practice No1.

Design, develop, and execute a program in C++ based on the following requirements:

An EMPLOYEE class is to contain the following data members and member functions:

Data members: EmployeeNumber (an integer), EmployeeName (a string of characters),

BasicSalary (an integer), All Allowances (an integer), IT (an integer), NetSalary

(aninteger).

Member functions: to read the data of an employee, to calculate Net Salary and to print

the values of all the data members. (AllAllowances = 123% of Basic; Income Tax (IT)

= 30% of the gross salary (= basic Salary _ AllAllowance); Net Salary = Basic Salary +

All Allowances – IT)

Algorithm:

1. Create Class Employee.

2. Class Employee Contains following data members

a. Employee_Number as integer

b. Employee_Name as String

c. Basic_Salary as integer

d. All_Allowances as integer

e. IT as integer

f. Net_Salary as integer

g. Gross_Salary as integer

3. Class Employee Contains following members functions

a. Create function as getdata for accepting information of employee. Like employee

name,employee number and basic salary etc.

b. Create function Net_salary_Calculation to calculate gross salary.

c. Create function displayInformation to display information about employee.

4. Create main function to call this function of class Employee.

Program:

 #include<conio.h>

 #include<iostream.h>

Class Employee

{

 Private: //Access Specifier

 Int Employee_Number;

 Char Employee_Name[50];

 Int Basic_Salary,Net_Salary,IT,All_Allowances,Gross_Salary;

 Public:

 Void getdata()

 {

 Cout<<”Enter Employee Name:”;

 Cin>>Employee_Name;

 Cout<<”Enter Employee Number:”;

 Cin>>Employee_Number;

Cout<<”Enter Employee Basic Salary:”;

 Cin>>Employee_Salary;

}

Void Net_salary_Calculation()

{

 All_Allowances=123/100*Basic_Salary;

 Gross_Salary=Basic_Salary+All_Allowances;

 IT=30/100*Gross_Salary;

Net_Salary=Basic_Salary+All_Allowances-IT;

}

Void displayInformation()

{

 Cout<<”\n-----------------Information About Employee---------“;

 Cout<<”\nEmployee Name:”<<Employee_Name;

 Cout<<”\nEmployee Number:”<<Employee_Number;

 Cout<<”\nEmployee Basic Salary:”<<Basic_Salary;

 Cout<<”\nEmployee Net Salary:”<<Net_Salary;

}

};

Void main()

{

 Employee e; //creating object of employee

 Clrscr(); //clear the screen

 e.getdata(); // calling function

e. Net_salary_Calculation()

e.displayInformation();

getch();

}

Output:
Enter Employee Name: ABC

Enter Employee Number:123

Enter Employee Basic Salary:10000

-----------------Information About Employee---------“;

Employee Name:ABC

Employee Number:123

 Employee Basic Salary:10000

Employee Net Salary:15610

Conclusion

A class is an extension to the structure data type. Data member should be grouped in

private access specifier and member functions are normally clustered together in

public section. Attempting to access private members from outside the class will cause

syntax error.

Experiment No.3

Title:Write a program to demonstrate different types of constructors

Objective:

 At the end of this experiment, students should be able to understand following

points:

1. Concept of Constructor and Destructor.

2. Use of constructor and Destructor.

Theory:

Constructors:

What is the use of Constructor

The main use of constructors is to initialize objects. The function of initialization is

automatically carried out by the use of a special member function called a constructor.

General Syntax of Constructor

Constructor is a special member function that takes the same name as the class name.

The syntax generally is as given below:

<class name> { arguments};

The default constructor for a class X has the form

X::X()

In the above example the arguments is optional. The constructor is automatically

named when an object is created. A constructor is named whenever an object is defined

or dynamically allocated using the "new" operator.

The constructor is invoke whenever an object of its class is created. It is called

constructor because it constructs the values of data member of the class

A constructor is declared and defined as follows

class integer

{

int m, n;

public:

integer(void); //constructor declared

};

integer :: integer(void) // constructor defined

{

m=0;

n=0;

}

The Constructor functions have some special characteristics:

 They should be declared in the public section.

 They are invoked automatically when the objects are created.

 They do not have return types, not even void and therefore they cannot return

values.

 Cannot be inherited, through a derived class can call the base class constructor.

 Like other C++ function, they can have default arguments.

 Constructor cannot be virtual.

 We cannot refer to their address.

 An object with a constructor (or destructor) cannot be use as a member of union.

 They make implicit calls to the operators new and delete when memory

allocation is required.

PARAMETERIZED CONSTRUCTOR

The constructors that can take arguments are called as parameterized constructors.

The constructor integer() may be modified to take arguments as shown below

class integer

{

int m, n;

public:

integer(int x , int y)

};

integer :: integer(int x, int y) //parameterized constructor

{

m = x; n =

y;

}

when constructor has been parameterized, the object declaration statement

integer int1;

may not work. We must pass initial values as a arguments to the constructor function

when an object is declared. This can be done in two ways.

 By calling the constructor explicitly

integer int1 = integer(0,150); //explicit call

this function creates an integer object int1 and passes the value 0 and 150 to it.

 By calling the constructor implicitly

integer int1 = integer(0,150); //implicit call

CONSTRUCTOR WITH DEFAULT ARGUMENTS

Its possible to defined constructor with default arguments. For e.g. complex() can be

declared as

complex(float real, float imag=0);

the default value of the argument imag is zero. Then, the statement

complex C(5.6);

assigns the value 5.6 to the real variable and 0.0 to imag (by default).

COPY CONSTRUCTOR

A copy constructor is used to declare and initialize an object from another object. For

e.g. the statement

integer I2(I1);

Would define the object I2 and at the same time initialize it to I1. Another form of this

statement is integer I2 = I1;

The process of initializing through a copy constructor is known as copyinitialization. A

copy constructor takes a reference to an object of the same classas itself as an

argument.

MULTIPLE CONSTRUCTORS IN A CLASS

class integer

{

int m, n;

public:

integer() { m = 0 ; n = 0; } //constructor 1

integer(int a, int b) //constructor 2

{ m = a; n = b; }
integer(integer & i) //constructor 3

{m = i.m; n = i.n;}

};

This declares three constructors for an integer object .

 integer I1;

the declaration would invoke the first constructor an set both m and n of I1 to zero.

(Receives no argument)

 integer I2(10,20);

initializes the data members m and n of I2 to 10 and 20 respectively.

 integer I3(I2);

invokes the third constructor which copies the value of I2 to I3.such a constructor is

called as copy constructor

Algorithm

1) Declare class(complex).Declare data members(x, y) and methods (constructor with

no argument ,with one and two argument) also declare friend function if required.(

friend complex sum(complex, complex);)

2) Define the declared methods with help of scope resolution operator if it is defined

outside the class.

3) Create an object of the respective class (complex c;) and call the constructor or pass

the value to the constructor.
Output

DESTRUCTORS

A destructor as name implies, is used to destroy the objects that have been created by a

constructor. Like constructor, the destructor is a member function whose name is the

same as the class name but is preceded by tilde. For Example, the destructor for the

class integer can be defined as shown below

~integer() { }

A destructor never takes any argument nor does it returns any value. It will be invoked

implicitly by the compiler upon exit from the program to clean up storage that is no

longer accessible. It is good practice to declare the destructors in a program since it

releases memory space for future use.

What is the use of Destructors

Destructors are also special member functions used in C++ programming language.

Destructors have the opposite function of a constructor. The main use of destructors is

to release dynamic allocated memory. Destructors are used to free memory, release

resources and to perform other clean up. Destructors are automatically named when an

object is destroyed. Like constructors, destructors also take the same name as that of

the class name.

General Syntax of Destructors

~ classname();

The above is the general syntax of a destructor. In the above, the symbol tilde ~

represents a destructor which precedes the name of the class.

Some important points about destructors:

 Destructors take the same name as the class name.

 Like the constructor, the destructor must also be defined in the public. The

destructor must be a public member.

 The Destructor does not take any argument which means that destructors

cannot be overloaded.

 No return type is specified for destructors.

For example

class alpha

{

public:

alpha()

{

count++;

cout<<”\nNumber of object created”<<count;

}

~alpha()

{

cout<<”\nNumber of object destroyed”<<count;

}

};

Algorithm

1) Declare constructor in any class(alpha)

2) In constructor declare one variable for keeping the record of created objects

3) For releasing the memory of declared constructor define the destructor with

„~‟ sign, above variable will show the destroyed object.

4) Create object of class (alpha)

Output

Conclusion

With help of constructors we have fulfilled one of our requirements of implementation

of abstract data types. Initialization at definition time. Providing a constructor to ensure

every object is initialized with meaningful values can help eliminate logic errors. We

still need a mechanism which automatically destroy same object when it gets invalid.

(For e.g. because of leaving its scope.) Therefore classes can define destructors

Experiment No.4

Title:Write a program using static data member as well as member function,

create function using default argument concept.

Objective:

 At the end of this experiment, students should be able to understand following

points:

1. Static Data Member and Static Member Function.

2. Concept of Defalut argument.

Theory:

Static Data Member:

We can define class members static using static keyword. When we declare a member

of a class as static it means no matter how many objects of the class are created, there is

only one copy of the static member.

A static member is shared by all objects of the class. All static data is initialized to zero

when the first object is created, if no other initialization is present. We can't put it in the

class definition but it can be initialized outside the class as done in the following

example by redeclaring the static variable, using the scope resolution operator :: to

identify which class it belongs to.

Declarion Syntax:

Initaliztion of static variable:

 Static variable initlize outside the class.

Syntax:

Data_type class_name:: static_variable_name=value;

Access Static data member outside the class Syntax:

Algorithm:

1. Create Class name Box.

2. Declare class member objectCountas static,length,breadth,height.

3. Define member function

a. Define constructor.

b. Member function Volume for calculate Volume.

4. Create main function to call functions of Box class.

Let us try the following example to understand the concept of static data members:

#include<iostream.h>

classBox

{

public:

staticint objectCount; //static variable

// Constructor definition with default argument

Data_type class_name:: static_variable_name=value;

 Static static_variable_name;

 class_name:: static_variable_name;

Box(double l=2.0,double b=2.0,double h=2.0)

{

 cout <<"Constructor called."<< endl;

 length = l;

 breadth = b;

 height = h;

// Increase every time object is created

 objectCount++;

}

doubleVolume()

{

return length * breadth * height;

}

private:

double length;// Length of a box

double breadth;// Breadth of a box

double height;// Height of a box

};

// Initialize static member of class Box

intBox::objectCount =0;

int main(void)

{

BoxBox1(3.3,1.2,1.5);// Declare box1

BoxBox2(8.5,6.0,2.0);// Declare box2

// Print total number of objects.

 cout <<"Total objects: "<<Box::objectCount << endl;

return0;

}

When the above code is compiled and executed, it produces the following result:

Output:

Constructor called.

Constructor called.

Total objects:2

Static Member Function:

By declaring a function member as static, you make it independent of any particular

object of the class. A static member function can be called even if no objects of the

class exist and the static functions are accessed using only the class name and the scope

resolution operator ::.

A static member function can only access static data member, other static member

functions and any other functions from outside the class.

Static member functions have a class scope and they do not have access to

the this pointer of the class. You could use a static member function to determine

whether some objects of the class have been created or not.

Declaration of Static Function

Calling Static function outside the class

Algorithm:

1. Create Class name Box.

2. Declare class member objectCount as static,length,breadth,height.

3. Define member function

a. Define constructor.

b. Member function Volume for calculate Volume.

c. getCount Member function as static

4. Create main function to call functions of Box class.

Static data_type function_name(Argument1,argument2,….,argument)
{
 //Access only static data member and static member functions.
 Static_variable=value;
}

Class_name::static_function_name();

Let us try the following example to understand the concept of static function members:

#include<iostream>

usingnamespace std;

classBox

{

public:

staticint objectCount;

// Constructor definition with default argument

Box(double l=2.0,double b=2.0,double h=2.0)

{

 cout <<"Constructor called."<< endl;

 length = l;

 breadth = b;

 height = h;

// Increase every time object is created

 objectCount++;

}

doubleVolume()

{

return length * breadth * height;

}

staticint getCount()

{

return objectCount;

}

private:

double length;// Length of a box

double breadth;// Breadth of a box

double height;// Height of a box

};

// Initialize static member of class Box

intBox::objectCount =0;

int main(void)

{

// Print total number of objects before creating object.

 cout <<"Inital Stage Count: "<<Box::getCount()<< endl;

BoxBox1(3.3,1.2,1.5);// Declare box1

BoxBox2(8.5,6.0,2.0);// Declare box2

// Print total number of objects after creating object.

 cout <<"Final Stage Count: "<<Box::getCount()<< endl;

return0;

}

When the above code is compiled and executed, it produces the following result:

Output:

InitalStageCount:0

Constructor called.

Constructor called.

FinalStageCount:2

Experiment No.5

1) Write C++ programs to implement the following data structures using arrays.

a) Stack ADT b) Queue ADT

Aim: A program to implement the Stack ADT using arrays.

STACK: A stack is an ordered collection of data items into which new items may be inserted

and from which data items may be deleted at one end. Stack are also called Last-In-First-out

(LIFO) lists.

Representation of a Stack

TOP

8

7

6

5 F

4 E

3 D

2 C

1 B

0 A

Basic terminology associated with stacks:

1) Stack Pointer (TOP): Keeps track of the current position the stack.

2) Overflow: Occurs when we try to insert (push) more information on a stack than it can

hold.

3) Underflow: Occurs when we try to delete (pop) an item off a stack, which is empty.

Basic Operation Associated with Stacks:

1) Insert (Push) an item into the stack.

2) Delete (Pop) an item from the stack.

Program:

#include<iostream>

using namespace std;

#define MAX 10

int top=-1,ch,i;

template <class T>

class StackADT

{

public:

virtual void Push()=0;

virtual void Pop()=0;

virtual void Top()=0;

virtual void Display()=0;

};

template <class T>

class Stack: public StackADT<T>

{

T stk[MAX],ele;

public:

void Push();

void Pop();

void Top();

void Display();

};

template <class T>

void Stack<T>::Push()

{

if(top==(MAX-1))

Stack[9]

cout<<"\nThe stack is full";

else

{

cout<<"\nEnter an element:";

cin>>ele;

top++;

stk[top]=ele;

cout<<"\nElement pushed successfully\n";

}

}

template <class T> void Stack<T>::Pop(){

if(top==-1)

cout<<"\nThe stack is empty";

else

{

ele=stk[top];

top--;

cout<<"The deleted element is:"<<ele;

}

}

template <class T>

void Stack<T>::Top()

{

if(top==-1)

cout<<"\nThe stack is empty";

else

cout<<"The top element of the stack is:"<<stk[top];

}

template<class T>

void Stack<T>::Display()

{

if(top==-1)

cout<<"\nThe stack is empty";

else

{

cout<<"\nThe elements in the stack are:";

for(i=top;i>=0;i--)

cout<<"\n"<<stk[i];

}

}

int main()

{

Stack<int> s1;

do

{

cout<<"\n****MENU****";

cout<<"\n1. Push\n2. Pop\n3. Top\n4. Display\n5. Exit";

cout<<"\nEnter ur Choice:";

cin>>ch;

switch(ch)

{

case 1: s1.Push();

break;

case 2: s1.Pop();

break;

case 3: s1.Top();

break;

case 4: s1.Display();

break;

case 5: exit(1);

default: cout<<"Enter correct Choice";

}

}while(true);

}

Experiment No.6

Aim: A C++ program to implement the Queue ADT using arrays.

QUEUE:

Queue is an ordered collection of data such that the data is inserted at one end and deleted

from other end. It is a collection of items to be processed on a First-In-First-Out(FIFO) or First

Come First Served(FCFS) basics.

Ascending order of memory

Deletion insertion

Front Rear

A B C D E F G

Basic Operation Associated on Queues:

1) Insert an item into the Queue.

2) Delete an item into the Queue.

Program:

#include<iostream>

using namespace std;

#define MAX 10

int front=0,rear=0,ch,i;

template <class T>

class QueueADT

{

public:

virtual void Insert()=0;

virtual void Delete()=0;

virtual void Display()=0;

};

template <class T>

class Queue: public QueueADT<T>

{

T q[MAX],ele;

public:

void Insert()

{

if(rear==MAX)

cout<<"\nQueue is full";

else

{

cout<<"\nEnter an element:";

cin>>ele;

q[rear]=ele;

rear++;

cout<<"\nElement inserted successfully\n";

}

}

void Delete()

{

if(front==rear)

cout<<"\nQueue is empty";

else

{

ele=q[front];

front++;

cout<<"The deleted element is:"<<ele;

}

}

void Display()

{

if(front==rear)

cout<<"\nQueue is empty";

else

{

cout<<"\nThe elements in the queue are:";

for(i=front;i<rear;i++)

cout<<q[i]<<" ";

}

}

};

int main()

{

Queue<int> q1;

do

{ cout<<"\n***MENU***";

cout<<"\n1. Insert\n2. Delete\n3. Display\n4. Exit";

cout<<"\nEnter ur Choice:";

cin>>ch;

switch(ch)

{

case 1: q1.Insert();

break;

case 2: q1.Delete();

break;

case 3: q1.Display();

break;

case 4: exit(1);

default: cout<<”Entered Wrong Choice”;

}

}while(1);

2) } Write C++ programs to implement the following data structures using a singly linked list.

a) Stack ADT b) Queue ADT

Aim: A C++ program to implement the Stack ADT using singly linked list.

Program:

#include<iostream>

using namespace std;

template<class t>

class node

{

public:

t info;

node *link;

};

template <class t>

class StackADT

{

virtual void Push()=0;

virtual void Pop()=0;

virtual void Top()=0;

virtual void Display()=0;

};

template<class t>

class StackLinkImp:public StackADT<t>

{

public:

t item;

node<t> *temp, *top;

StackLinkImp()

{

top=NULL;

}

void Push()

{

temp=new node<t>;

cout<<"Enter the itemto be insrted on to the stack:";

cin>>item;

if(top==NULL)

temp->link=NULL;

else

temp->link=top;

temp->info=item;

top=temp;

cout<<"Insertion Completed Successfully";

}

void Pop()

{

if(top==NULL)

cout<<"Stack is empty";

else

{

item=top->info;

top=top->link;

cout<<"The deleted element is:"<<item;

}

}

void Top()

{

if(top==NULL)

cout<<"Stack is empty";

else

cout<<"The top element is:"<<top->info;

}

void Display()

{

if(top==NULL)

cout<<"Stack is empty";

else

{

temp=top;

cout<<"The elements in the stack are:";

while(temp!=NULL)

{

cout<<temp->info<<" ";

temp=temp->link;

}

}

}

};

int main()

{

int ch;

StackLinkImp<int> s1;

do

{

cout<<"\n****Menu****";

cout<<"\n1. Push\n2. Pop\n3. Top\n4. Display\n5. Exit";

cout<<"\nEnter ur choice:";

cin>>ch;

switch(ch)

{

case 1: s1.Push();

break;

case 2: s1.Pop();

break;

case 3: s1.Top();

break;

case 4: s1.Display();

break;

case 5: exit(1);

default: cout<<”Entered Wrong Choice”;

}

}while(1);

}

3) Write C++ programs to implement the Double Ended Queue (DEQUE) using array.

Aim: A C++ program to implement the Double Ended Queue (DEQUE) using array.

Program:

#include <iostream>

using namespace std;

#define MAX 10

int front=-1,rear=-1,c,i;

template<class t>

class dqueADT

{

public:

virtual void addqatbeg()=0;

virtual void addqatend()=0;

virtual void delqatbeg()=0;

virtual void delqatend()=0;

virtual void display()=0;

};

template <class t>

class dque: public dqueADT<t>

{

public:

t q[MAX],item;

dque()

{

front=rear=-1;

for(i=0;i<MAX;i++)

q[i]=0;

}

void addqatbeg()

{

cout<<"Enter an element:";

cin>>item;

if (front==0&&rear==MAX-1)

{

cout<<"\nDeque is full"<<endl;

return ;

}

if(front==-1)

{

Aim: A C++ program to implement the Queue ADT using singly linked list.

Program:

#include<iostream>

using namespace std;

template<class t>

class node

{

public:

t info;

node *link;

};

template<class t>

class QueueADT

{

virtual void Insert()=0;

virtual void Delete()=0;

virtual void Display()=0;

};

template <class t>

class QueueLinkImp: public QueueADT<t>

{

public:

t item;

node<t> *temp,*front,*rear;

QueueLinkImp()

{

front=rear=NULL;

}

void Insert()

{

temp=new node<t>;

cout<<"Enter an element to be inserted in to queue:";

cin>>item;

temp->info=item;

temp->link=NULL;

if(front==NULL)

{

front=rear=temp;

cout<<item<<" inserted Successfully";

return;

}

rear->link=temp;

rear=rear->link;

cout<<item<<" inserted Successfully";

}

void Delete()

{

if(front==NULL)

cout<<"Queue is empty";

else

{

item=front->info;

front=front->link;

cout<<"Deleted Element is: "<<item;

}

}

void Display()

{

if(front==NULL)

cout<<"Queue is empty";

else

{

cout<<"The elements in the queue are:";

for(temp=front;temp!=NULL;temp=temp->link)

cout<<temp->info<<" ";

}

}

};

void main()

{

int ch;

QueueLinkImp<int> q1;

do

{

cout<<"\n****MENU****";

cout<<"\n1. Insert\n2. Delete\n3. Display\n4. Exit";

cout<<"\nEnter ur choice:";

cin>>ch;

switch(ch)

{

case 1: q1.Insert();

break;

case 2: q1.Delete();

break;

case 3: q1.Display();

break;

case 4: exit(1);

default: cout<<”Entered Wrong Choice”;

}

}while(1);

}

Aim: A C++ program to implement the Double Ended Queue (DEQUE) using array.

Program:

#include <iostream>

using namespace std;

#define MAX 10

int front=-1,rear=-1,c,i;

template<class t>

class dqueADT

{

public:

virtual void addqatbeg()=0;

virtual void addqatend()=0;

virtual void delqatbeg()=0;

virtual void delqatend()=0;

virtual void display()=0;

};

template <class t>

class dque: public dqueADT<t>

{

public:

t q[MAX],item;

dque()

{

front=rear=-1;

for(i=0;i<MAX;i++)

q[i]=0;

}

void addqatbeg()

{

cout<<"Enter an element:";

cin>>item;

if (front==0&&rear==MAX-1)

{

cout<<"\nDeque is full"<<endl;

return ;

}

if(front==-1)

{

front=rear=0;

q[front]=item;

return;

}

if(rear!=MAX-1)

{

c=count();

int k=rear+1;

for(i=1;i<=c;i++)

{

q[k]=q[k-1];

k--;

}

q[k]=item;

front=k;

rear++;

}

else

{

front--;

q[front]=item;

}

}

void addqatend()

{

cout<<"Enter an element:";

cin>>item;

if(front==0&&rear==MAX-1)

{

cout<<"\nDeque is full"<<endl;

return;

}

if(front==-1)

{

rear=front=0;

q[rear]=item;

return;

}

if(rear==MAX-1)

{

int k=front-1;

for(i=front-1;i<rear;i++)

{

k=i;

if(k==MAX-1)

q[k]=0;

else

q[k]=q[i+1];

}

rear--;

front--;

}

rear++;

q[rear]=item;

}

void delqatbeg()

{

if(front==-1)

{

cout<<"\nDeque is empty"<<endl;

return;

}

item=q[front];

q[front]=0;

if(front==rear)

front=rear=-1;

else

front++;

cout<<"Deleted item is:"<<item;

}

void delqatend()

{

if(front==-1)

{

cout<<"\nDeque is empty"<<endl;

return;

}

item=q[rear];

q[rear]=0;

rear--;

if(rear==-1)

front=-1;

cout<<"Deleted item is: "<<item;

}

void display()

{

cout<<endl<<"front-> ";

for(i=0;i<MAX;i++)

cout<<" "<<q[i];

cout<<" <-rear";

}

int count()

{

int c=0;

for(i=0;i<MAX;i++)

{

if(q[i]!=0)

c++;

}

return c;

}

};

main()

{

int ch;

dque<int> s1;

do

{

cout<<"\n****Menu****";

cout<<"\n1. Insert at Beginning\n2. Insert at End\n3. Delete from Beginning\n4. Delete from

End\n5. Display\n6. Exit";

cout<<"\nEnter ur choice:";

cin>>ch;

switch(ch)

{

case 1: s1.addqatbeg();

break;

case 2: s1.addqatend();

break;

case 3: s1.delqatbeg();

break;

case 4: s1.delqatend();

break;

case 5: s1.display();

break;

case 6: exit(1);

}

}while(1);

}

4) Write C++ programs to implement the Double Ended Queue (DEQUE) using array.

Lab Manual: Data structures through C++

Page | 77

Department of Master of Computer Applications

	Representation of a Stack
	Basic terminology associated with stacks:
	Basic Operation Associated with Stacks:
	QUEUE:
	Basic Operation Associated on Queues:

